Bilangan Berpangkat

Bilangan berpangkat adalah bilangan yang ditulis dalam bentuk eksponensial untuk menyatakan pengulangan perkalian suatu bilangan secara ringkas.

Bentuk Umum
Bilangan berpangkat ditulis sebagai a^n
a disebut basis (bilangan pokok), yaitu bilangan yang akan dikalikan.
n disebut pangkat (eksponen), yaitu jumlah pengulangan perkalian basis.

Contoh:
1. 2^{3}=2\cdot 2 \cdot 2 =8
2. 5^{4}=5\cdot 5 \cdot 5 \cdot 5=625

Sifat-sifat Bilangan Berpangkat
Jika dua bilangan atau lebih memiliki basis yang sama, maka berlaku:
a^{m}\cdot a^{n}=a^{m+n}
\frac{a^m}{a^n}=a^{m-n}, dengan m\geq n
\left(a^m\right)^n = a^{m \cdot n}

Bilangan apa pun yang dipangkatkan 0 hasilnya adalah 1, kecuali a = 0.
Contoh:
 \begin{aligned} &1^{0}=1// &1000^{0}=1\end{aligned}
Mengapa demikian?

Leave a Reply

Your email address will not be published. Required fields are marked *